Cometabolic degradation of TCE vapors in a foamed emulsion bioreactor.

نویسندگان

  • Eunsung Kan
  • Marc A Deshusses
چکیده

Effective cometabolic biodegradation of trichloroethylene (TCE) vapors in a novel gas-phase bioreactor called the foamed emulsion bioreactor (FEBR) was demonstrated. Toluene vapors were used as the primary growth substrate for Burkholderia cepacia G4 which cometabolically biodegraded TCE. Batch operation of the reactor with respect to the liquid feed showed a drastic decrease of TCE and toluene removal over time, consistent with a loss of metabolic activity caused by the exposure to TCE metabolites. Sustained TCE removal could be achieved when continuous feeding of mineral medium was implemented, which supported cell growth and compensated for the deactivation of cells. The FEBR exhibited its highest TCE removal efficiencies (82-96%) and elimination capacities (up to 28 gTCE m(-3) h(-1)) when TCE and toluene vapors were fed sequentially to circumvent the competitive inhibition by toluene. The TCE elimination capacity was 2-1000 times higher than reported in other gas-phase biotreatment reports. During the experiments, 85-101% of the degraded TCE chlorine was recovered as chloride. Overall, the results suggestthatthe FEBR can be a very effective system to treat TCE vapors cometabolically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of a foamed emulsion bioreactor: I. Model development and experimental validation.

Recently, a new type of bioreactor for air pollution control referred to as the foamed emulsion bioreactor (FEBR) has been developed. The process relies on the emulsion of an organic phase with a suspension of an actively growing culture of pollutant-degrading microorganisms, made into a foam with the air undergoing treatment. In the current paper, a diffusion and reaction model of the FEBR is ...

متن کامل

Modeling of a foamed emulsion bioreactor: II. model parametric sensitivity.

The sensitivity of a conceptual model of a foam emulsion bioreactor (FEBR) used for the control of toluene vapors in air was examined. Model parametric sensitivity studies showed which parameters affect the removal of toluene (as model pollutant) in the FEBR the most significantly, and enabled definition of the limits of the process. Detailed examination of the results indicated that the proces...

متن کامل

Development of foamed emulsion bioreactor for air pollution control.

A new type of bioreactor for air pollution control has been developed. The new process relies on an organic-phase emulsion and actively growing pollutant-degrading microorganisms, made into a foam with the air being treated. This new reactor is referred to as a foamed emulsion bioreactor (FEBR). As there is no packing in the reactor, the FEBR is not subject to clogging. Mathematical modeling of...

متن کامل

Sand Media Type and Charge Effects on Tce Cometabolism in a Fluidized- Bed Bioreactor

Fluidized-bed biological reactors (FBBRs) may be used to remove chloroethenes such as trichloroethene (TCE) from groundwater. Proper selection of FBBR aqueous growth medium, biofilm solid support media type and size, and bed charge (bed depth to column length fraction) are critical for establishing a biomass of sufficient quantity and activity to transform TCE via aerobic cometabolism, which re...

متن کامل

Cometabolic degradation of trichloroethene by Rhodococcus sp. strain L4 immobilized on plant materials rich in essential oils.

The cometabolic degradation of trichloroethene (TCE) by Rhodococcus sp. L4 was limited by the loss of enzyme activity during TCE transformation. This problem was overcome by repeated addition of inducing substrates, such as cumene, limonene, or cumin aldehyde, to the cells. Alternatively, Rhodococcus sp. L4 was immobilized on plant materials which contain those inducers in their essential oils....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 40 3  شماره 

صفحات  -

تاریخ انتشار 2006